skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Agarwal, Shrihan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the past few years alone, the lensing community has discovered thousands of strong lens candidates, and spectroscopically confirmed hundreds of them. In this time of abundance, it becomes pragmatic to focus our time and resources on the few extraordinary systems, in order to most efficiently study the Universe. In this paper, we present such a system: DESI-090.9854-35.9683, a cluster-scale lens atzl= 0.49, with seven observed lensed sources around the core, and additional lensed sources further out in the cluster. From the number and the textbook configuration of the lensed images, a tight constraint on the mass potential of the lens is possible. This would allow for detailed analysis on the dark and luminous matter content within galaxy clusters, as well as a probe into dark energy and high-redshift galaxies. We present our spatially resolved kinematic measurements of this system from the Very Large Telescope Multi Unit Spectroscopic Explorer, which confirm five of these source galaxies (in ascending order, atzs= 0.962, 0.962, 1.166, 1.432, and 1.432). With previous Hubble Space Telescope imaging in the F140W and F200LP bands, we also present a simple flux-based lens model consisting of two power-law profiles that, for a cluster lens, well models the five lensed arc families with redshifts. We determine the mass to beM(<θE) = 4.78 × 1013Mfor the primary mass potential. From the model, we extrapolate the redshift of one of the two source galaxies not yet spectroscopically confirmed to be at z s = 4.52 0.71 + 1.03
    more » « less
  2. Abstract This supplement provides supporting material for Lam et al. We briefly summarize past gravitational microlensing searches for black holes (BHs) and present details of the observations, analysis, and modeling of five BH candidates observed with both ground-based photometric microlensing surveys and Hubble Space Telescope astrometry and photometry. We present detailed results for four of the five candidates that show no or low probability for the lens to be a BH. In these cases, the lens masses are <2 M ⊙ , and two of the four are likely white dwarfs or neutron stars. We also present detailed methods for comparing the full sample of five candidates to theoretical expectations of the number of BHs in the Milky Way (∼10 8 ). 
    more » « less
  3. Abstract We present the analysis of five black hole candidates identified from gravitational microlensing surveys. Hubble Space Telescope astrometric data and densely sampled light curves from ground-based microlensing surveys are fit with a single-source, single-lens microlensing model in order to measure the mass and luminosity of each lens and determine if it is a black hole. One of the five targets (OGLE-2011-BLG-0462/MOA-2011-BLG-191 or OB110462 for short) shows a significant >1 mas coherent astrometric shift, little to no lens flux, and has an inferred lens mass of 1.6–4.4M. This makes OB110462 the first definitive discovery of a compact object through astrometric microlensing and it is most likely either a neutron star or a low-mass black hole. This compact-object lens is relatively nearby (0.70–1.92 kpc) and has a slow transverse motion of <30 km s−1. OB110462 shows significant tension between models well fit to photometry versus astrometry, making it currently difficult to distinguish between a neutron star and a black hole. Additional observations and modeling with more complex system geometries, such as binary sources, are needed to resolve the puzzling nature of this object. For the remaining four candidates, the lens masses are <2M, and they are unlikely to be black holes; two of the four are likely white dwarfs or neutron stars. We compare the full sample of five candidates to theoretical expectations on the number of black holes in the Milky Way (∼108) and find reasonable agreement given the small sample size. 
    more » « less